Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Am J Pathol ; 192(7): 1001-1015, 2022 07.
Article in English | MEDLINE | ID: covidwho-1906700

ABSTRACT

Vascular injury is a well-established, disease-modifying factor in acute respiratory distress syndrome (ARDS) pathogenesis. Recently, coronavirus disease 2019 (COVID-19)-induced injury to the vascular compartment has been linked to complement activation, microvascular thrombosis, and dysregulated immune responses. This study sought to assess whether aberrant vascular activation in this prothrombotic context was associated with the induction of necroptotic vascular cell death. To achieve this, proteomic analysis was performed on blood samples from COVID-19 subjects at distinct time points during ARDS pathogenesis (hospitalized at risk, N = 59; ARDS, N = 31; and recovery, N = 12). Assessment of circulating vascular markers in the at-risk cohort revealed a signature of low vascular protein abundance that tracked with low platelet levels and increased mortality. This signature was replicated in the ARDS cohort and correlated with increased plasma angiopoietin 2 levels. COVID-19 ARDS lung autopsy immunostaining confirmed a link between vascular injury (angiopoietin 2) and platelet-rich microthrombi (CD61) and induction of necrotic cell death [phosphorylated mixed lineage kinase domain-like (pMLKL)]. Among recovery subjects, the vascular signature identified patients with poor functional outcomes. Taken together, this vascular injury signature was associated with low platelet levels and increased mortality and can be used to identify ARDS patients most likely to benefit from vascular targeted therapies.


Subject(s)
Angiopoietin-2 , COVID-19 , Necroptosis , Respiratory Distress Syndrome , Angiopoietin-2/metabolism , COVID-19/complications , Humans , Proteomics , Respiratory Distress Syndrome/virology
2.
Cytokine ; 154: 155894, 2022 06.
Article in English | MEDLINE | ID: covidwho-1803861

ABSTRACT

OBJECTIVE: To study how severity and progression of coronavirus disease (COVID-19) affect cytokine profiles in pregnant women. MATERIALS AND METHODS: 69 third-trimester, pregnant women were tested for COVID-19 infection and SARS-CoV-2 specific IgM and IgG antibodies. Patients were stratified according to SARS-CoV-2 Reverse Transcriptase-PCR (RT-PCR) status and serology (IgM and IgG) status. Cytokines G-CSF, HGF, IL-18, IL-1Ra, IL-2Ra, IL-8, and IP-10 were measured via ELISA. Retrospective chart review for COVID-19 symptoms and patient vitals was conducted, and cytokine levels were compared between SARS-CoV-2 positive and negative cohorts, by seronegative and seropositive infection, by time course since onset of infection, and according to NIH defined clinical severity. RESULTS: IL-18, IL-1Ra, and IP-10 increased in the 44 RT-PCR positive pregnant women compared to the 25 RT-PCR negative pregnant controls. Elevated cytokine levels were found in early infections, defined by positive RT-PCR and seronegative status, and higher cytokine levels were also associated with more severe disease. By IgM seroconversion, IL-8 and IP-10 returned to levels seen in uninfected patients, while IL-18 levels remained significantly elevated. CONCLUSION: Cytokine profiles of third-trimester pregnant women vary with the time course of infection and are correlated with clinical severity.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Chemokine CXCL10 , Cytokines , Female , Humans , Immunoglobulin G , Immunoglobulin M , Interleukin 1 Receptor Antagonist Protein , Interleukin-18 , Interleukin-8 , Pregnancy , Pregnant Women , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL